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Abstract 

This paper examines the efficient variance-based global sensitivity analysis (GSA), quantified by 

estimating first-/higher-order and total-effect Sobol’ indices, for applications involving complex numerical 

models and high-dimensional outputs. Two different, recently developed, techniques are combined to 

address the associated challenges. Principal component analysis (PCA) is first considered as a 

dimensionality reduction technique. The GSA for the original output vector is then formulated by 

calculating variance and covariance statistics for the low-dimensional latent output space identified by 

PCA. These statistics are efficiently approximated by extending recent work on data-driven, probability 

model-based GSA (PM-GSA). The extension, constituting the main novel contribution of this work, 

pertains to the estimation of covariance statistics beyond the variance statistics examined in the original 

PM-GSA formulation. Specifically, a Gaussian mixture model (GMM) is developed to approximate the 

joint probability density function between some subset of the input vector, and each latent output, or each 

pair of latent outputs. The GMM is then utilized to estimate the aforementioned statistics. Results across 

two natural hazards engineering examples show that the dimensionality reduction and transformation of 

output space established through PCA do not impact the overall accuracy of the PM-GSA, and that the 

proposed implementation accommodates highly-efficient GSA estimates.   

Keywords: sensitivity analysis; high-dimensional output; principal component analysis; Gaussian mixture; 

Sobol’ indices.  

1. Introduction  

Global sensitivity  analysis (GSA) plays  a  prominent role in engineering analysis and design  [1-5]. Its 

objective is to quantify  the importance of the different model inputs with respect to their impact on the 

model output [6], the latter representing the quantity of interest (QoI) in the problem  formulation. This 

quantification  provides valuable insights  into the system  behavior, and it can be used to guide various tasks,  

including  dimensionality  or  uncertainty  reduction and optimal decision making. Different approaches exist 
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to perform  GSA [6-11],  and  perhaps the most popular one is variance-based decomposition utilizing Sobol’  

indices [12]. This paper examines the efficient estimation of these indices for engineering applications that 

involve complex numerical models  and high-dimensional outputs. Objective is the estimation of the 

sensitivity indices for each  of the output components. Efficiency  in this setting refers to both the estimation 

of the indices using only  a  small number  of model simulations, to accommodate  the larger computational  

burden these simulations entail, as well as to the need to perform  the estimation for each of the  QoIs, which  

might exceed a few thousands of outputs in certain applications. Furthermore, our interest is in approaches  

that do  not  require a  specialized numerical simulation to  support the GSA  estimation rather can be  

performed using generic simulation data. Such approaches can be  seamlessly  integrated within existing  

computational workflows, offering GSA as supplementary information to the primary  tasks accomplished 

through these workflows. 

For individual QoIs, Sobol’  indices can  be computed using a double-loop Monte Carlo integration 

(MCI), separately  performed for each examined index. Since the double-loop MCI involves  a substantial 

computational effort, alternative formulations have been considered over the past two decades [13]. These  

formulations include: highly efficient sampling schemes to perform  the MCI [14-16]  establishing a total 

MCI burden that increases linearly  with the dimension of the model input; estimation using design of  

experiments concepts [17]; approximations using  samples from auxiliary  density functions [18, 19];  

approaches that replace the original model with a  fast-to-compute surrogate model [20-24],  even  

accommodating an entirely analytical estimation of the indices when the surrogate model corresponds to  

Polynomial Chaos Expansion [20]. The domain of  applicability  of  these approaches depends on the  

flexibility  provided for performing the global sensitivity  analysis,  with  some  of  them  (for  example  some  

MCI approaches) requiring a specialized  set of model simulations, selected with an explicit objective to 

support the sensitivity  analysis, which somewhat limits their applicability.  Purely data-driven approaches 

that rely  on the availability  of a generic sample input/output set without placing any  restrictions on the 

characteristics of this set can overcome this limitation. Towards this objective, Hu and Mahadevan [25]  

recently  established a powerful generalized probability-model GSA (PM-GSA) framework to compute 

different types of Sobol’  indices. The framework relies on the development of a  probability  model to 

approximate the joint probability  density between each input (or subsets of inputs) and the examined QoI. 

The probability models examined in [25]  included  Gaussian mixture models, Gaussian copula  models and  

a new Gaussian mixture copula model, and all of them  were shown  to provide good estimation accuracy, 

with some marginal preference offered [25]  for the Gaussian mixture model based on its demonstrated  

robustness. Implementations in [25], and in most cases referenced in this paragraph that do not fall in the 

MCI category, considered only  a single QoI, meaning that for multi-output cases they  will need to be 

independently  performed for each output. Should be  also noted that each of these alternative approaches  
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has its own advantages, and depending  on the implementation setting, for example the dimensionality  of  

the input or the type of indices estimated or the characteristics of the model response, may emerge as more  

favorable from  the perspective of computational efficiency and/or accuracy [6, 26].  

When examining applications to models with multiple outputs, efforts to accommodate  higher 

efficiency  in the estimation of Sobol’  indices [27-31]  rely  frequently  on  some  form of output 

decomposition/compression  or dimensionality  reduction using Principal Component Analysis  (PCA). The 

sensitivity  in this case can be quantified with respect  to the basis used to accomplish the dimensionality  

reduction (for example, the principal components when PCA is used), though, in many  applications,  

transformation to the original output might be required to accommodate the insights needed of the GSA 

[29, 30].  As demonstrated  in [29], PCA can facilitate  an efficient, purely  data-driven implementation in  

such a  setting. In the [29]  formulation, termed Dimension Reduction and Surrogate-based Sensitivity  

Analysis (DRE-SSA), PCA is first used to identify  a low-dimensional space of  latent components for the 

provided input/output samples, the necessary  variance and covariance statistics are then estimated for the  

latent components, and finally  the PCA linear mapping is utilized to obtain the Sobol’  sensitivity  indices 

for all original outputs. Since the statistics needed to accommodate the GSA correspond to the low  

dimensional latent space,  they can be efficiently  estimated individually.  In [29]  these statistics were 

approximated  using  a surrogate modeling approach.  This paper offers a  different formulation, considering  

the extension of PM-GSA [25]  to accommodate the estimation of Sobol’  indices within a  setting that uses 

a PCA-based  latent space representation. We should stress that the motivation of the present study  is not 

any  need to address shortcomings of the surrogate-model formulation in [29], which was shown to enjoy  

good accuracy  and efficiency  characteristics. Rather  the proposed here advances merely  establish an  

implementation that offers an alternative approach to the use of metamodeling techniques. As mentioned  

in the  previous paragraph,  such an alternative implementation can be proven  useful for some application 

setups.  

A data-driven framework is, therefore, established in this work, integrating the approaches proposed in 

[29]  and [25], for the efficient estimation of Sobol’ sensitivity  indices for applications involving complex  

numerical models and high-dimensional outputs. The PCA-based formulation of Li et al. [29]  is leveraged  

to restrict the estimation of statistics to the latent outputs only. The probability model-based GSA of Hu 

and Mahadevan [25]  is then extended to estimate these statistics to replace the original surrogate-model 

formulation examined in [29]. The extension, constituting the main novel contribution  of  this work, refers 

to advances to accommodate the estimation of covariance statistics involving multiple latent outputs,  

beyond  the estimation of variance statistics for single QoIs originally considered in [25]. Only  the Gaussian  

mixture probability-based model investigated in [25]  is considered  here, due to the robust performance it 

exhibits, though the approach can be extended to the other ones examined in that paper. The impact on the 
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accuracy of probability model-based GSA by the transformation of output space established through PCA 

is also examined in detail. The overall framework is termed PCA and Probability model-based sensitivity 

analysis (PCA-PSA).  

The remainder of the paper is organized as follows. Section 2 reviews the problem formulation, and 

Section 3 develops the proposed method, offering also a concise review of the two methodologies that form 

its foundation. Section 4 considers two illustrative examples from the domain of natural hazards 

engineering, the first one considering the sensitivity of the engineering demand parameters (drifts and 

accelerations) of a 9-story benchmark steel structure with uncertain model properties exposed to seismic 

excitation (example with moderate output dimension), and the second one examining the sensitivity to 

storm forecast variability of the estimated peak-surge over an extended spatial grid (output with over million 

dimensions) during Superstorm Sandy. Across both examples, different settings are examined for the 

proposed formulation with respect to the number of latent outputs considered and the dimensionality of the 

GMM. 

2. Problem formulation 

Consider a  system  model with input  vector x  [x ,..., x ]T 
1 n 

x 
n x , where xi is the ith  input and  nx is the  

total number of inputs, and  let y j     denote the jth model output  (QoI). The system  model has a  total of  

ny  different  outputs  of interest, creating the output vector y  [ y ,..., y ]T 
1 n  

y 
ny . Our underlying  

assumption is that the system  model corresponds to a computationally  expensive computer simulation, 

creating a restriction on the model evaluations that can be considered to perform the GSA (computational 

burden constraint). Note, though, that the established formulation is appropriate  for any  application with  

higher dimensional output  vector. Let f(x) denote the probability  density  function characterizing the  

variability  of  the system  input. Although Sobol'  indices are typically  expressed for independent and 

uniformly  distributed in [0,1]  inputs, the concept has been readily  extended to other types of distributions 

[32-34]  as well as to jointly independent subsets of  inputs [35].  The idea can be also implemented for 

individual dependent inputs, though in this case, care is needed in  interpreting  the exact meaning of the 

estimated sensitivity  indices [36-38].   

Variance-based GSA considers the decomposition of the total variance Var [ ]y j   to the contributions 

coming from  each of the inputs xi  as well  as by  the interaction between all groups  of inputs [14].   Though 

Sobol’  indices of different orders of interaction can be defined, the two types of indices widely utilized are 

the first-order indices and the total-effect indices. For the jth output and the ith  input, these indices are 

defined, respectively, as:  

Author personal  Copy: https://doi.org/10.1016/j.ress.2022.108805                                                       4 
 

https://doi.org/10.1016/j.ress.2022.108805


 
 

Var
Si E i 

 i [ ~i [ y j | xi ]] V 
j = j    i  1, ...,n x ,  j  1,..., nVa [ ] y    (1)

r y j Vj

[ [E i 

 S iT Var ~

 1  ~i i y j | x~i ]]  V
 1 j

j    i  1, ...,n x ,  j  1,...,ny    (2)
Var [ ]y j Vj

where Var[.] and  E[.]  denote the variance and expectation operators, respectively, x~i  denotes the input 

vector excluding xi  input, and subscripts i and ~i are utilized to describe statistics (variance or expectation) 

with respect to xi or x~i  inputs, respectively. Also, for notational simplicity, and to accommodate the PCA 

decomposition examined in the next Section, we have defined V Var[ ]y , V i 
j j j Vari [E~i[y j | xi ]]  and 

V ~i 
j Var~i[ [Ei y j | x ~i ]] . To  facilitate a  multi-output implementation for  both the Sobol’ indices and the 

associated statistics, the terminology  established is to use subscripts for the output and superscripts for the  

input. The first-order indices given by Eq. (1) quantify the contribution of the ith input to the variability  of 

the jth  QoI without  considering its interaction with the  other inputs,  while the  total-effect indices given by 

Eq. (2)  consider, additionally, the interactions with all possible combinations of the remaining inputs. 

Higher-order indices are also defined by  considering interactions of multiple inputs. For example, the 

second-order sensitivity  index between i and l inputs is given by:  

il Varil [E~il [ y j | xi , x ]]V i l  V V il  V i l  V
 S j  l j j = j j j  i, l  1,..., ,nx  i  l,   j  1,...,n    (3)

Var y[ ]j Var y[ j ] 
y 

where we defined V il j Var  il [E ~il [y j | x xi , l ]] .  

A unified representation for the variances in the  numerator of Eqs. (1), (2) and (3) can be established 

by defining:  

 V c 
j Varc[E~c[ y j | xc ]]    (4) 

where c  corresponds to the indices of  inputs that  need to be  considered, with xc  representing these inputs 

and x~c  their complement. Dimension of xc  will be denoted nc  herein.  For Eq.  (1)  c=i, for Eq.  (2) c=~i, 

while for Eq. (3)   c=[i l].  A  similar concept extends to the expressions for all other higher-order indices 

[12], including the estimation of first-order indices for subsets of inputs [35]  for which c in Eq. (4)  

represents the  subset index. Therefore, the calculation of the Sobol’ indices requires estimation of Vj and  

estimation of V c 
j  for different definitions for c.  

Our objective in this paper is to estimate Sobol’  indices for applications with a  large number of outputs  

ny, utilizing only  a  small number of evaluations of the system  model (needed to estimate Vj  and  V c 
j ) to 

accommodate  the assumed  high computational complexity  of the system  model. The focus is on the  
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estimation of the indices separately for each of the output components. Parenthetically note that this 

information can be subsequently used to define aggregated (across all outputs) importance indicators for 

each input definition xc . This is accomplished by a weighted average of the sensitivity for each output j, 

with the variance Vj as recommended weight [22, 39]. Within the context of the PCA dimensionality 

reduction approach, implemented in the next section, an equivalent derivation of aggregated importance 

indicators can be accomplished by utilizing the sensitivity for each principal component (instead of the 

sensitivity for each of the original outputs) in this formulation.  

3. Proposed method  

As discussed in the introduction, an entirely  data-driven formulation is examined for the Sobol’  indices 

estimation. Assume  that a total of k  model evaluations (simulations) is available, for different samples for  

the model input {xs ; s  1,..., k} .  These samples are obtained from the underlying probability  distribution 

f(x). The corresponding output is  {y s ; s  1, ..., k} with y s  y( )xs  representing the output vector for model  

input xs . Let  finally  X  [x1  ... x k T  ]   k n   x  and  Y  [y1  ... y k T  ]   k n y  denote the input and  output  

matrices, respectively.  Our  objective is to estimate Sobol’ indices using data [X, Y].  Sections 3.1 and 3.2  

discuss the two components of the proposed PCA-PSA framework, the dimensionality  reduction and  

probability model-based estimation of relevant statistics, respectively, while Section 3.3 reviews the overall 

implementation and discusses computational efficiency and accuracy characteristics.  

3.1 Dimensionality reduction using PCA    

PCA is first used as a dimensionality  reduction technique [40].  In this setting, it is convenient to 

consider PCA as the  eigendecomposition of the covariance matrix  YT Y associated with the observation 

matrix Y,  where  Y  corresponds to the matrix of normalized observations, established by  subtracting for  

each output its mean value over the observations:  

1 
j 

k 

y  y  ys
j   y  μ

k j j y j 

 s1 (5)
 k

  
1

where μy   s

j  yk j
s1 

Solution of the eigenvalue problem  provides the vector of latent outputs (also mentioned as principal  

components) with the jth latent output denoted by zj. The corresponding eigenvalue λj  represents the portion 

of the total variance of the original data Y  that can be explained by  zj, while the corresponding  eigenvector   

P y

j  n
 facilitates the mapping from  y to zj. The number of such independent latent outputs equals to the 

rank of Y [40], corresponding  to  min(ny,k-1) [minimum of the number of independent rows or  columns],  
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where min(a,b) denotes the minimum of the two arguments. To accommodate  a  larger dimensionality 

reduction only  the principal components corresponding to  the np  largest eigenvalues are retained, with np  

chosen so that the ratio 

n 


p 

λ j 

 r  j1 

min( ,


 n k  y  1) 

  (6) 

 λ j 
j1 

is greater than some  threshold ro (for example 99.9%). This ratio represents the  portion of the original output  

variance that can be explained by  the retained components [41].  In  Eq. (6), the denominator represents the  

total variance, while the numerator the variance of the retained components. The selection of  np will be  

further examined within the context of the overall framework in  Section 3.3.  The vector of the retained  

principal components is denoted by z, while the relationship between z and  y  is y P z  μ y  τ  where

P n n  y p  is the projection matrix with the jth  column  corresponding  to eigenvectors Pj ,  μ y  is the mean  

vector for the original data Y (vector with elements μy ) and τ represents the PCA approximation error.  
j 

This means that for the jth original output the following approximation is established:  

 y j  [ ]P zj*  μ y j 
  (7)

where [ ]P 1np

j*  is the  row vector corresponding  to  the jth  row of the projection matrix P.  The  

observation matrix Z  [z1  ...   z k T  ]   k n p  for the latent outputs is Z  YP , with sth row corresponding to  

the latent output vector for model input xs .  

Using information [X, Z]  calculation of statistics of interest for the latent output z, to support the 

estimation of the desired sensitivity  indices for y, will be discussed in Section 3.2.  Specifically, calculation 

of  Vj  requires the estimation of the  covariance matrix Σz  for z, and calculation of V c
j  requires estimation 

of the covariance matrix Σc  for random variables E z[ | x  ]  [29]. Note that the diagonal elements of Σc 
z ~c j c z  

correspond  to Varc[E~c [z j | xc ]]  while the jl  off-diagonal element corresponds to  

Covc[E~c [z j | ]xc , E~ c[ z l | ]xc ]  where  Cov[.] corresponds to the covariance operator.  

Based on transformation of Eq. (7), and given statistics Σ , and Σc
z z   for z, the quantities needed for 

the estimation of sensitivity indices for each of the original outputs  can be approximated as [29]:  

V  [ ]P Σ ([ P] )T 

 
j j* z j* 

c c T
  (8)

V j  [ ]P Σj* z ([ P] j* )
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For the entire output vector y, these statistics can be conveniently  expressed in matrix form  [29].  For 

example, for V c
j  we have: 

 V c  diag(PΣc P T 
z ( ) ) [PΣc

z ] P   (9) 
row 

where Vc  ny  denotes the vector with elements V c 
j , diag(A) corresponds to  the diagonal elements of  

matrix A, A B  corresponds to the Hadamard  product of matrices A and  B (element-wise multiplication 

of the matrices), and  A  represents the vector with elements given by  the summation of the matrix A 
row 

elements for each column (summation across the matrix rows). Identical expression holds for Vj: 

 V  diag(PΣ T
z (P) )  [PΣz ]  P  (10)  

row 

where V  ny  denotes the vector with elements V j . Note that  statistics Vj  can be easily  derived from 

matrix Y, though to establish a consistent influence of  the PCA truncation error across all statistics needed 

for the Sobol’ index estimation, it  is recommended to  use the latent output statistics also to calculate Vj. 

This way,  the truncation error originating from  the reduced number of components retained in  the PCA  

impacts all the calculated statistics for yj. 

Finally,  according to the decomposition of Eq. (8) [or of the equivalent decomposition in  vector  format 

given by Eq. (9)],  estimation of the Sobol’ indices for the original  output  requires estimation of  matrices  

Σz  and Σc
z , which needs to be performed  given the  data [X, Z].  The first one is given by     

Σ  ZT 
z Z / (k  1) ,   while the estimation of the latter is discussed in the next Section.  

3.2 Probability model-based estimation of conditional statistics   

The estimation of the conditional statistics Σc
z  using data [X, Z]  is established utilizing the probability 

model-based approach of Hu and Mahadevan [25]. As discussed in the introduction, a Gaussian mixture is 

adopted here as the probability  model, though formulation can be readily  extended to accommodate  the 

copula-based probability  models  examined in detail in [25].  The  approximations for the variance-related 

statistics Varc[E~c [z j | xc ]]  are established following  directly  the  formulation in  [25], while the  

approximations of the covariance statistics Cov c [E ~c [z j | ]xc , E ~ c [z l | ]xc ]  require a  slight extension. The  

variance-related statistics are reviewed first, followed by  the  extension to the covariance statistics. A  slight 

modification of the Monte Carlo integration needed for the variance statistics is also introduced.  

For estimating Varc [E~c [z j | xc ]]  the joint probability  density  function (PDF) of xc  and zj  (nc+1 

dimensional PDF)  is initially  approximated through a multivariate GMM utilizing subset [ ,X Zc  j ]  of  the 
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original data, where Xc  corresponds to data for input components xc and Zj corresponds to the data for 

principal component zj. Note that this projection of the data to the space of [xc, zj] ultimately accommodates 

the estimation of statistics with respect to x~c [25]. The approximation of the desired joint PDF is written 

as: 

Q 
( )j ( )j ( j )f ( ,c z j ) wq N (xc , z j | μq , Σq )x (11) 

q1 

( )j ( )j ( )jwhere Q is the number of GMM components, wq , μq , and Σq are the weight, mean vector and 

covariance matrix of the qth GMM component, respectively, and N(v|μ, Σ) denotes Gaussian PDF with 

mean μ and covariance Σ evaluated at v. Superscript (j) is used for all relevant GMM parameters to 

distinguish that the GMM fit pertains to xc and zj combination. The mean and covariance of the qth 

component can be partitioned as: 

( )jμ q,x( )j cμ   q ( )jμ q z,  j  
(12)

( )j ( )j Σ Σ q,x q,x z( )j c c jΣq   
( )j ( )jΣq z, x Σq z,  j c j  

where subscript xc or zj (or combined) is used to denote the specific random variable of the joint PDF the 

statistic pertains to. Note that Σ( )j is a scalar (the variance of zj for the GMM fit)  but for notational q z, j 

consistency, it is denoted as a covariance matrix. The GMM parameters can be estimated using the 

Expectation Maximization (EM) algorithm [42], whereas for selecting the number of components, 

techniques relying on the Bayesian Information Criterion can be utilized to avoid overfitting that data [43]. 

Based on the fitted GMM of Eq. (11), the conditional expectation E z[ |j x ]  can be expressed using the ~c c 

conditional distribution of the fitted Gaussian mixture probability model as [25]: 

Q 
( )j ( )jE z[ |  x ]  w (x )  μ (13) ~c j c  q c q z, |x 

q1 
j c 

where conditional statistics for each component of the GMM are obtained as: 

( )j ( j )  ( )jw N ( |  ,x μ  Σ  )
( )j q c q,xc q,xcwq ( )xc  

Q 
( )j ( )j ( )jx μ  Σ  )wq ' N ( |c q ',x , q ',x (14)c c 

q '1 

1( j ) ( j )  ( )j ( )j ( )jμq z, |x  μq z,  Σq z, x  Σq,x  (xc  μq,x )
j c j j c c c 
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These expressions can be obtained [25, 44]  by  leveraging the linearity  of the expectation operator [Eq. (13) 

],  the marginal distribution for x  [appearing in  the   denominator of  the weights w( )j 
c q ( )xc ],  and the 

conditional expectation of each of the Gaussian mixture components [appearing in the expression for μ( )j
q z, |j xc 

].  The overall variance Varc[E~c [z j | xc ]]  can be finally  calculated using Monte Carlo Integration (MCI) to  

estimate the variance of the conditional expectation,  with the  latter approximated through  Eq. (13). The 

resultant expression is: 

1 
N  ( )h  1 

N 
(h) 

2

 Varc [E~c[z j | xc ]]   E~c[z j | xc ]   E~c[z j | xc ]  (15)  
N h1 

  


 
 N h1  

where N  is the total number of MC samples used and x( )h
c  denotes the hth sample of xc. There are two  

choices for generating the sample set {x ( )h
c ; h  1,..., N} . The first one, denoted as MCIf, is to obtain samples 

from  f(xc) [for example using directly  the  sample set Xc],  while the  second one, the one recommended in  

[25]  and denoted as MCIp, is  to utilize instead of  f(xc) the marginalized fitted GMM PDF of Eq. (11) for xc  

given by:  

Q 

 x ( j )  ( )j 
c ~ w q N (x c | μ q,x ,  Σ ( )j

c q,x c 
)  (16)  

q1 

This PDF corresponds to the approximation of f(xc)  based on the GMM fitted on [xc  zj].  The objective 

behind using the fitted approximation instead of the original PDF is to accommodate consistency: both the 

conditional expectation E z~c[ |j x c ]  as well as the overall variance Var c [E ~c [z j | x c ]]  are   approximated 

using the fitted probability  model. Independent  of the approach  adopted to generate the set  

{x ( )h
c ; h  1,..., N} , the computational burden of the MCI  is small, therefore value for  N  can be selected large 

to minimize the estimation  error.  

The procedure for approximating the covariance statistic Covc [E ~c[z j | ]x c , E ~c[zl | ]xc ]  is similar and it  

involves two  steps: approximation of the two conditional expectations using the conditional GMM and 

numerical integration for the covariance statistics by MCI. Depending on  the approach taken for generating 

the sample set {x ( )h
c ; h  1,..., N}  for the MCI, the required conditional expectations might be readily 

available through existing results (for calculating variance statistics)  or they  might need new GMM fits. If  

the sample  set {x ( )h
c ; h  1,..., N}  is obtained from  f(xc) (MCIf) then the two conditional expectations 

E z~c [ |j x c  ]  and E z~c[ |l x c ]  are readily available from  the GMM established to estimate Var c [E ~c [z j | x c ]]  

(using data [ ,X Zc   j ] )  and Var c [E ~c [z l | xc ]]  (using  data [ ,X Zc  l  ] ), respectively, expressed through Eqs.  

(13) and (14).  The MCI estimate of the covariance statistics is then:  
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Covc[E~c [z j | xc ],  E~c  [zl | xc ]]  

1 
N  N 

( )h  1  ( )h  ( )h  1 N 
         E z~c [ j | x  ]    E z ( )h 

N c
 N ~c [ j | x c ] E z


~c

 
 [ l | x c ]    E z~c [ l | x c ]   (17)  

h1  h1  N h1  

1 N  1 N N 
     

  1 
  E z~c [ j | x ( )h ( ) ( )h 

 ]E z ( )
~c[

h h 

N c  l | x c ]   E z[ j | x c ]   ~c  x    E z~c [ |l  c ] 
h1  N h1  N h1  

If, on the other hand, the sample set {x ( )h
c ; h  1,..., N} utilized in the MCI needs to come from the same  

GMM  that is  used for estimation of the conditiona l  statistics (MCIp), then a  new probability  model is 

needed. For this purpose, the joint PDF of xc  and zj and zl (nc+2 dimensional PDF) is initially  approximated  

through a GMM utilizing subset [ ,X Zc  j ,   Z l ]  of the  original data. The corresponding PDF is: 

Q 

  f ( ,xc z j , z ) j l )
l  w( ,

q N ( ,x c z j , zl | μ
( j ,l ) ( j
q , Σ ,l )

q )  (18)  
q1 

where the mean and covariance of each component can be partitioned  as:  

μ ( ,j l )  
 q,xc 

 μ ( ,j l  ) j l
q   μ ( , )

q,z
 

j 


μ ( ,j l ) 
l 

 

 q z,  
 

 
  (19) 

 Σ( ,j l  )  Σ ( j l   , ) j l

   c q,xc z j 
Σ ( , )   

q,x  q,x c zl  
Σ ( ,j l  ) ( j l  , ) ( ,j l )  

q  Σq , z  x  
Σq, z Σ ( j l, )

 j c j  q, z  j z  
l  

   


Σ( ,j l  )
, x Σ( j l  , ) ( , )  

 q z  
l , Σ j l

c q zl z j q z  , l 
 

Superscript (j,l) is used to denote the fact that the GMM fit pertains to the combination of xc, zj  and zl. 

Conditional expectations E z~c[ |j x c ]  and E z~c [ |l x c  ]  in this instance are obtained by  first  estimating the 

marginal distribution with  respect to the desired variables, [x c z j ]  and [x c zl ] , respectively,  and then by  

calculating the conditional statistics with respect to xc, which leads to: 

Q 

  E z~c[ | x ]   w ( ,j l  )
q ( x ( j l , )

 o c c )  μq ,z    
o |xc 

  ;  o j  or l  (20) 
q1 

N  
( ,

( |x μ ,
)  

w( ,j l  ) ( j l
q  ) 

c q ,x  
j l  c

,  Σ( j l,
q  ) ,xc

)
where wq (xc )  


Q 

w( ,j l  )N  ( |x μ( j l  , ) 
q ' c q ',x  , ( ,j l )  

c
 Σq ',xc 

)
q '1 

            
1

μ
  

 ( ,j l  )  μ ( ,j l  )  

c 
 ( ,j l  )

q z, |o x q z,  
o

Σq z, o x c Σ ( ,j l )  x ( 
  μ j ,l  )

q ,xc 
 ( c q ,xc 

)

Covariance statistics are finally obtained by  Eq.  (17)  with conditional expectations provided  by  Eq.  (20)  

and the sample  set {x ( )h
c ; h  1,..., N}  obtained through the marginalized fitted GMM PDF of Eq. (18) for xc  

given in this case by: 
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Q 

 x ~ w ( ,j l )N (x | μ ( j ,l ) 
c q c q,x , 

c
 Σ ( j ,l )

q,x  
c 
)   (21) 

q1 

Finally,  the covariance matrix Σc
z  is assembled by  using  diagonal components Varc [E~c [z j | xc ]]  and 

off-diagonal components Covc [E ~c[z j | ]x c , E ~c[zl | ]xc ] .  

3.3 Overview of PCA-PSA algorithm and discussion on computational characteristics    

Combining the concepts discussed in the previous two sections, the PCA and Probability  model-based 

sensitivity analysis (PCA-PSA) algorithm  is established through the following steps.  

Step 1: Generate sample set {xs ;s 1,...,k}~f(x) and evaluate system  output {ys ;s  1,...,k} for all of 

them to obtain data [X, Y]  (with rows corresponding to the input and output vectors, respectively, for 

each sample).    

Step 2: Perform  principal component analysis and identify  eigenvalues  λj  and eigenvectors Pj of  

covariance matrix YT Y . Retain the principal components that correspond to the np  largest eigenvalues 

so that the ratio r  given by Eq. (6) is greater than desired threshold ro  (for example 99%  or 99.9%). 

This provides the projection matrix P (with columns the retained eigenvectors) and the data matrix for 

the principal components Z  YP . Estimate the variance of the original output using the retained  

principal components through Eq.  (10) using Σz  ZT Z / (k  1) .  

For each of the Sobol’  indices perform  the  following steps. These steps are presented next  for  the  MCIf  

implementation, with extension to MCIp examined later.    

Step 3: Based on the calculated index define subset xc. This also determines its  complement x~c  but 

that complement will not be explicitly needed.  

Step 4: For each principal component zj, fit a GMM to data [Xc, Zj] where Xc  corresponds to the  

columns of X corresponding to xc and Zj to the jth column of Z. Repeat this np times, one for each zj. 

Step 5: Estimate the variance statistics  for each zj  using Eq. (15)  and covariance statistics using Eq.  

(17) with sample set {x ( )h
c ;h  1,..., N} obtained from  f(xc) and all conditional expectations estimated  

according to Eqs. (13) and (14) using the GMM for the respective output  zj.  

Step 6: Calculate the required variance statistics for the original output  using  Eq. (9)  and use that to  

estimate the Sobol’ indices for the original output.  

If MCIp  implementation is utilized, then Steps 4  and 5 need to be modified. In this case, each variance  

or covariance statistic is based on a separate GMM fit. Dedicating each of these  two steps to the  estimation 

of the respective statistics, the alternative formulation has the following modified steps: 
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Step 4: For each principal component zj, fit a GMM to data [Xc, Zj]  and estimate  the variance statistics 

using Eq. (15)  with sample set {x ( )h
c ;h  1,..., N} obtained from  Eq. (16), and  conditional expectation  

estimated according to Eqs. (13) and (14). Repeat this np times, one for each zj.  

Step 5: For each combination of principal components zj and zl, l  j , fit a GMM to data [Xc, Zj, Zl]  

and estimate the covariance statistics using Eq. (17) with sample set  {x ( )h
c ;h  1,..., N}  obtained from  

Eq. (21), and conditional expectations estimated according to Eq. (20). Repeat this np(np-1)/2 times, 

one for each combination of zj and zl.   

The computationally  intensive part of the PCA-PSA algorithm  is the GMM fit to the  data, which for 

each index needs to be performed np times if MCIf is adopted and np(np+1)/2 times if MCIp is adopted. For  

the MCIf implementation the fit pertains to a nc+1 dimensional PDF and for the MCIp  implementation to a  

nc+1 dimensional or  a  nc+2  dimensional PDF. Most other calculations rely  on  simple matrix manipulations,  

and so can be performed with a  negligible computational burden.  The Monte Carlo integration  also has a  

very  small burden even for large N  values, since the quantities involved (conditional expectations) have 

only  small computational complexity. This burden  is reduced in the MCIf  implementation, since for the  

covariance statistics the same  conditional expectation calculations as for the variance statistics can be 

utilized. On the other hand, for the MCIp  implementation, the estimation of covariance statistics requires  

separate calculations for the conditional expectation approximations. Finally,  the computational burden for 

the PCA can be moderate if ny  and k  are large, but the PCA needs to  be performed  only  once; therefore, the 

contribution to  the total computational burden is small. Thus,  the overall computational complexity of  the  

PCA-PSA algorithm  primarily  comes from the GMM fit. This shows that  MCIf  provides substantial 

computational advantages compared to MCIp. 

Furthermore, when compared to the implementation without dimensionality  reduction, which  would  

require ny  different GMM fits, it is evident  that the proposed formulation can give substantial benefits when  

np<<ny. A further improvement of computational efficiency  for PCA-PSA  can be accomplished if a  single  

GMM is considered for all principal components. This is accomplished by  considering a GMM fit for  the  

joint  PDF of  xc  and z  in Step 4  of  the original algorithm,  using data  [Xc, Z].  Then for  the estimation of the  

conditional statistics, a  marginalization of the remaining outputs is  first performed to obtain the GMM fit 

for xc  and zj (retain only the components of the mean vector and covariance matrix related to xc  and zj) and 

that GMM is then utilized for estimating the necessary  conditional statistics. This implementation reduces 

the number of  fitted GMMs to 1, though for a nc+np  dimensional PDF of substantially  larger dimension, 

and will be referenced as PCA-PSAs herein. Technically either MCIf or  MCIp integration can be combined  

with this formulation.  
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Regarding the accuracy  of PCA-PSA algorithm,  and assuming that the Monte Carlo integration can be 

easily performed for a large value of  N (therefore reducing the integration error), there are two main sources 

of error: (a) the error stemming from  the dimensionality reduction due to PCA, and (b) the error stemming  

from  the approximation of the conditional statistics using the GMM  fit. The first type of error can be easily 

reduced by  adopting a large value for the ro  threshold  and keeping a large number of principal components 

[29]. This can be easily  accommodated within PCA-PSA, especially if  MCIf is adopted since the 

computational burden increases only  linearly with the number of principal components. In such cases, it is 

recommended that ro  is set to a  very  high value, over 99%. The influence of the second type of error is  

discussed in detail in [25], and fundamentally  it depends on the quality  of the probability  model  

approximation established through the GMM. This error can be reduced by using a larger database  

(increasing k), but this might be impractical for applications with expensive simulation models. Also, even 

for larger k  values, there will be an unavoidable error, associated  with how well the adopted probability  

model (GMM in this case) fits the original response distribution. Finally, it  is important to note that this 

error is impacted by  the dimensionality  of vector xc, which dictates the dimension for the fitted GMM (nc+1 

or  nc+2  dimensional PDF for the PCA-PSA implementation), and,  therefore, is expected to increase for  

higher-order indices, and for total-effect indices [25].  For the same  reasons, it will be larger for first-order 

indices for group of inputs, since in this case nc corresponds to the size of the group.  

The accuracy  of PCA-PSA could be additionally  impacted by  the transformation of the output, i.e.  the  

fact that the GMM fit and approximation of conditional distribution are implemented for each of the latent 

outputs instead of the original output. A  priori there is no indication that one output space will always  

accommodate a  better fit than the other one (this will be at best application-dependent), and so  there should  

be no strong influence on the results by  the output transformation itself. Overall, provided that a  sufficient  

number of latent components is used, the accuracy  of PCA-PSA is  expected to be similar to the one 

established by  the implementation of PM-GSA on the original output data, offering though  substantial 

computational benefits for applications with large dimensional outputs.  As will be shown in  one of  the  

examples  the transformation of the output space may  even act beneficially  if the original output has some 

complex behavior.  

Finally,  some remarks should be provided for comparing PCA-PSA to the original surrogate-based  

DRE-SSA [29].  PCA-PSA ultimately  replaces the surrogate model  approximation for  the latent response 

with respect to the  entire input x required in DRE-SSA,  with a GMM fit  with respect to the  same response  

and vector xc, which though needs to be repeated for each xc  definition. Both implementations need to be 

established for each latent response output (no differences with respect to this aspect). Although the GMM 

fit is expected to be a computationally simpler task, especially  when the number of simulations k is  larger, 

the fact that it needs to be repeated for each xc  definition might create a similar, or an even higher  
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computational burden, depending on the number of different indices examined. With respect to the accuracy 

of each of these two approximations (GMM fit versus surrogate model approach), relative preference for 

each will depend on the specifics of the application considered [25, 26]. This issue, though, is independent 

of the output dimensionality, and so is outside the scope of the present study, which, as discussed in the 

introduction, aims to offer an alternative to the original surrogate-based DRE-SSA [29] formulation. For 

this reason, the comparisons in the illustrative examples next, will focus on aspects relevant to the higher 

dimensional output (comparing PCA-PSA to the version without the PCA implementation, PM-GSA) and 

not on the type of approximation (GMM fit or surrogate model-based DRE-SSA [29]) established.  

4. Illustrative examples  

Two different illustrative examples are considered, originating  from  the domain of natural hazards  

engineering. The first example examines the sensitivity  of engineering demand  parameters  (drifts and 

accelerations)  of a  9-story  benchmark steel structure exposed to a seismic excitation and represents an 

example with  a  moderate output dimension (ny=18), while the second example examines the sensitivity  to  

storm  forecast variability  of the estimated peak-surge over an extended spatial grid  (output with over million  

dimensions) during Superstorm  Sandy. Emphasis is  placed on the estimation of first-order indices though 

some  results will be presented for higher-order indices and total-effect indices. Validation of PCA-PSA is  

established by  comparing predictions to the exact results, obtained through a double-loop Monte Carlo 

integration. For first-order and total-effect indices, an efficient numerical implementation of  the double-

loop  MCI is considered [14, 15]. For higher-order interaction indices, the double-loop MCI  is  separately  

implemented  for each index. For both examples, the GMM fit is performed using the Expectation-

Maximization algorithm  [44]  with an adaptive selection of  the number of mixture components based on the  

maximization of the Bayesian Information Criterion [43].  

For both examples, estimation of Sobol’ indices using  both PCA-PSA  as well  as directly for the original  

output  by PM-GSA (no PCA step) is examined. To investigate the accuracy  across the different variants 

for PCA-PSA, both MCIf and MCIp  approaches are considered, whereas the PCA-PSAs  formulation, 

implemented  using  MCIf  integration,  is also examined. For  the  reasons discussed in Section 3.3,  no  

comparisons are performed with respect to the surrogate-based DRE-SSA [29]  formulation.    

Results will also be presented for individual outputs, but to allow for easier exploration of trends across 

different implementation variants the focus will be  on average accuracy  across the outputs using the 

normalized root mean squared error as a  metric. If Sj  denotes the reference  results for the Sobol’ index of  

interest for output y  obtained through the double loop MCI and S j  j  the approximation of the same index  

using PCA-PSA, the normalized root mean squared error, denoted nrmse herein, is given by:  
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1 
n 


y 

(S 2
j  S j )n

 nrmse  y j1 
  (22)  

max (S j )  min (S j )
j1,...,ny j 1,...,ny 

4.1 Nine-story benchmark building under earthquake excitation    

The first example corresponds to a nine-story, hysteretic moment resisting frame steel structure 
[45]. The numerical model for it is described in detail in [46], and it corresponds to a nonlinear, 

hysteretic model. The structure is excited by the Loma Prieta earthquake and its response is 
estimated through nonlinear response-history analysis. Output y includes peak values of the 

inter-story drifts of all stories {δj; j=1, …,9} and absolute floor acceleration for all stories {aj; 
j=1, …,9} for a total of ny=18 outputs. Each of the two output types (drifts and accelerations) is 
normalized so that the contribution to the total variance is equal; this is done merely to establish 
a balanced contribution to the overall PCA from  drifts and accelerations, and does not affect the 
GSA in any other way. It can be simply viewed as scaling of the drifts and accelerations through 
some proper thresholds for each engineering demand parameter type. The model input x includes 
the damping ratio, ζ, the modulus of elasticity, Ε, and yield stress, fy, for the steel, and the mass 
coefficient (representing mass density per floor), ms, for a total of nx=4 inputs. For each input, a 
range of possible values is considered, expressed as variation with respect to the nominal values 
reported in [46]. This range is chosen as [0.8 1.2] for the modulus of elasticity, and [0.6 1.4] for 

the remaining parameters. The smaller range for the modulus of elasticity was chosen (after 
some initial investigation) so that it does not dominate the sensitivity of the output. A uniform  
probability distribution is chosen for input x within the aforementioned ranges. To improve the 
accuracy of the GMM fit, the transformation of x to the standard Gaussian space is performed 
when establishing that fit. Three different values for the number of total simulations will be  

examined, k=500, k=1000 and k=10,000, for the proposed data-driven GSA implementation. The 
first two should be considered reasonable values for seismic risk assessment for applications 

with complex numerical models, while the third, larger value is examined to better investigate 
the impact on the accuracy when larger amount of data is available.   

Figure 1 presents the ratio of captured variance as a  function of the number of retained principal 

components for implementations with k=500 or 10,000 simulations (model evaluations). Based on the  

results of the  figure, for  ro=99%, np=10  number of components are needed whereas for ro=99.9%, np=16 

number of components are needed, practically  independent of the value of  k. Figure 2 shows the accuracy 

improvement for the estimation of the first-order Sobol’ indices, quantified through  nrmse  value, as the 

number of retained principal components (np) increases  for the case with k=500 simulations. Figure 3 shows 

the same  results for the case with k=10,000 simulations. Note that accuracy  for PM-GSA is not impacted  

by  the number of retained components, since the estimation is performed directly  for the original output.  

This is depicted in the figures with a nrmse curve corresponding to a straight line across the np values.  
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Figure 1.  Portion  of total variance of original  output against the number  of  principal  components retained, for 
implementation  with  k=500  and  k=10,000  simulations (model  evaluations) for the  nine-story  benchmark building  

example. 
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Figure 2.  Error metric nrmse  of  the first-order Sobol’  indices estimates for  different GSA  variants against the  
number of principal components retained,  for implementation  with k=500  simulations (model evaluations) for the 
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Results in Figure 2 and Figure 3 clearly  illustrate that, as expected, as the number of principal 

components increases the accuracy  of the PCA-based GSA (PCA-PSA  in these figures) improves, and that 

this accuracy  saturates (no further improvement) by the time the variance of the retained components 

reaches  a  value  of 99%. This trend agrees  with results in [29],  that similarly  leveraged PCA to accommodate  

GSA for problems with large dimensional outputs. The  divergence  for PCA-PSAs  implementation for larger  

np  values for the smaller k value  (Figure  2) will be discussed later when a  comparison across the variant  

PCA-PSA cases is examined. Evaluating the total accuracy  for PCA-PSA, comparisons to PM-GSA 

indicate that the PCA-based dimensionality  reduction  does not impact the GSA estimates: provided that a  

sufficient number of components is retained, the recommended implementations (this does not refer to  

PCA-PSAs) perform  equally  well or better than PM-GSA. This demonstrates  that any  errors in the Sobol’ 

indices estimation stem  from  the GMM-based approximation of the  conditional statistics (the PM-GSA  

foundation), and not the dimensionality  reduction or the modification of the  output space that the 

approximation is developed on. Though the minimal impact by  the  PCA dimensionality  reduction is  

expected when a sufficient  number of latent components is used,  the negligible influence by the output 

space the probability  model approximation is developed on, is an important outcome, and it validates the 

proposed combination of PCA with the original PM-GSA framework:  either if  the probability model-based 

GSA is formulated for the original output (PM-GSA curve in the figures) or for the latent output (PCA-
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PSA curves  in the figures), the results in  Figures 2 and 3 clearly demonstrate the same  degree of accuracy. 

Note that for  input  ζ  the initial reduction in accuracy  as np  increases should  be  attributed to a  reduction of 

the quality  of  the GMM fit  for the initially  retained output components when examining the joint PDF for 

this specific input variable.  As this trend pertains only  to small np values, with large PCA truncation  errors,  

and  is quickly corrected, it should not be a concern for the overall PCA-PSA framework implementation.   

Comparing now across the different PCA-PSA variants, we can observe that MCIp  and MCIf  

implementations yield similar accuracy  for PCA-PSA, while PCA-PSAs  provides worse results and actually  

demonstrates  a  divergent behavior for the lower number of simulations case (Figure 2) as the number of 

principal components increases. The lower accuracy for  PCA-PSAs  should  be  attributed to the  larger 

dimensional space considered for its implementation for the probability-model fit (nc+np  dimensional PDF), 

and the fact that as the number of principal components increases,  that dimension is also increasing. For 

the PCA-PSA implementations the  latter does not hold, with the probability-model fit established for nc+1  

dimensional PDFs for MCIf  and nc+1 or nc+2 dimensional  PDFs for MCIp. Note that for the first-order  

indices nc is equal to 1, which means that the addition of np dimensions to the  probability model (for  PCA-

PSAs) instead of  1 or 2  (for PCA-PSA) has a significant effect.  The  difference in the dimension of  the 

probability-model fit between PCA-PSA and PCA-PSAs  is the reason why  there is a  larger accuracy  

improvement by the  increase of the  number of  simulations k (compare Figure 3  results to Figure 2  results) 

for PCA-PSAs compared to PCA-PSA, and the divergent behavior for PCA-PSAs for larger np  values does 

no longer exist for the larger k: for PCA-PSA even with the lower  number of simulations, the information  

available is sufficient for the GMM fit, whereas for PCA-PSAs  the higher dimensionality  of  the  joint-PDF 

means that larger amount of information is needed to accommodate a good fit  (curse of dimensionality),  

creating a more substantial relative influence when the value of k increases.  

Figure 4 presents results for  the first-order indices for all 18 individual outputs for  the case with k=500  

model evaluations, for  all different GSA variants, including  the reference double-loop  MCI implementation.  

The results for all PCA-based implementations correspond to the  number of principal components for 

ro=99.9%  threshold. Trends are consistent with the ones reported in Figure 2 and  Figure 3 and  do not exhibit 

any differences across the individual outputs. Across all outputs, both PCA-PSA variants offer estimates 

close to the reference  results and similar to the implementation without PCA  (PM-GSA). Comparison  

across the two PCA-PSA variants, shows that the estimates from  the MCIp  implementation are closer to the 

PM-GSA predictions. This is not  surprising, since as discussed earlier the original PM-GSA adopts a  Monte 

Carlo integration approach that is identical to the MCIp.  
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Figure 4.  Comparison of individual first-order Sobol’ indices between different GSA variants, for  
implementation  with  k=500  simulations (model  evaluations) for the  nine-story  benchmark building  example. 

Number of retained components corresponds to  ro=99.9% for the PCA-based implementations.  

Table 1.  Error metric nrmse of different  Sobol’ indices across different  GSA variants, for implementations with 
different number of simulations k (model  evaluations) for the nine-story benchmark building example. Number of  

retained components corresponds to  ro=99.9% for the PCA-based implementations.  
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nrmse k First-order indices Higher-order 
indices 

Total-effect indices 

 ζ ms E  fy ms, E  ms, E, fy  ζ  ms  E  fy 

PM-
 GSA 

 500  0.033  0.057  0.019  0.013  0.211  0.497  0.739  0.026  0.205  0.121 

 1000  0.020  0.051  0.015  0.013  0.098  0.349  0.508  0.020  0.144 0.074 

 10,000  0.012  0.006  0.008  0.002  0.054  0.266  0.165  0.004  0.044 0.023 

PCA-
PSA 

(MCIf) 

 500  0.030  0.069  0.014  0.015  0.224  0.622  0.650  0.035  0.173  0.135 

 1000  0.021  0.044  0.016  0.015  0.169  0.462  0.486  0.025  0.138 0.100 

 10,000  0.015  0.006  0.012  0.002  0.061  0.228  0.169  0.004  0.052 0.024 

PCA-
PSA 

(MCIp) 

 500  0.033  0.043  0.018  0.010  0.233  0.405  0.676  0.020  0.139  0.108 

 1000  0.028  0.043  0.024  0.012  0.146  0.271  0.547  0.023  0.096 0.072 

 10,000  0.020  0.008  0.017  0.005  0.071  0.194  0.187  0.007  0.036 0.022 

PCA-
 PSAs 

(MCIf) 

 500  0.030  0.098  0.025  0.064  0.307  0.442  1.388  0.069  0.275  0.123 

 1000  0.022  0.058  0.013  0.026  0.247  0.289  0.896  0.057  0.157 0.121 

 10,000  0.024  0.031  0.008  0.015  0.070  0.332  0.346  0.013  0.076 0.049 
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Table 1 further summarizes the nrmse  values for first-order Sobol’  indices but  also presents values for  

some  higher-order (the ones that were identified to  have higher  values) and for all total-effect Sobol’ 

indices, for all considered values of model evaluations k. Similar to Figure 4 all  different GSA variants are 

presented, with the results reported for the PCA-based implementations corresponding to  the  number of 

principal components for ro=99.9%. Results for higher-order and total-effect indices show reduced 

accuracy. This should be attributed to the effect of the probability  model-based approximation, and not to 

the PCA dimensionality  reduction, as evident by the fact that the same trends hold for PM-GSA  as for PCA-

PSA. This is related fundamentally  to the dimensionality  of the  fitted distribution for  the GMM; this  

dimensionality is dependent on the nc  value, which is proportional to the order of the index considered. 

Note that for the higher-order indices greater reduction of accuracy  is observed compared to the total-effect  

indices that similarly  involve larger dimensional probability  model fits. This greater should be additionally 

attributed to the smaller, in general, values these indices take, as they  quantify correlation effects that are  

in general smaller than the total-effect or  the first-order values of individual inputs. All these trends agree 

with the ones reported in [25],  and relate to the greater challenges associated with fitting probability  models  

in higher dimensions. Such trends will be similar for any  sensitivity indices that involve large dimensional 

inputs, including, as discussed earlier, first-order indices for groups of inputs. Focusing on  the effect of the 

PCA dimensionality  reduction, the  same trends that hold for the  first-order indices with respect  to the MCIf  

and MCIp  implementations for PCA-PSA or the PCA-PSAs  performance, hold for the higher-order and 

total-effect indices. 

Finally,  as the number of simulations k  increases, the accuracy  of the GSA estimates increases. This  

pattern holds across all indices, but the  impact is greater for  the  higher-order and  the total-effect indices. 

The higher dimensionality  of the probability  model fit for those indices is what contributes to this greater 

impact. Note that an identical influence was identified for PCA-PSAs earlier, for the exactly same reasons.      

4.2 Forecasting of peak surge during Superstorm Sandy     

The second example corresponds to a  high-dimensional output case and examines the real-time  

probabilistic forecasting of storm  surge. A detailed description of  the problem  formulation is available in  

[47]. The model input x,  in this case, corresponds to the cross and along track variability, Δscross and Δsalong  

respectively,  the intensity, Δvw, and the size, ΔRmw,  of a landfalling storm,  and the objective is to provide 

probabilistic predictions for the expected storm  surge a  few days  before the storm  makes landfall [48]. The 

probability distribution for  x  is based on historical forecast errors and corresponds to, or can be converted 

to, Gaussian distributions. The output y  corresponds to the peak surge elevation (storm  surge over the node 

elevation), across the entire spatial grid encompassed by  the underlying numerical model (used to predict 

the storm  surge). The specific storm  examined here corresponds to Superstorm Sandy  and the forecast  

examined is for the National Weather  Service Advisory  20, which  roughly  corresponds to 72  hours before 
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landfall. The nominal storm  track will be shown in  some of the figures presented later, whereas an  

illustration of  the uncertainties associated with this advisory  can be found in  [47].  The numerical model 

utilized for the surge predictions corresponds to a surrogate model approximation for the north Atlantic  

coast [49]  informed by simulations [50]  of ADCIRC (Advanced Circulation Model for Shelves, Coastal  

Seas, and Estuaries) [51].  For the implementation discussed here, this approximation is considered to  

correspond to the exact numerical model, and within PCA-PSA is only  utilized to perform  the k  simulations  

to obtain the sample set [X, Y]. Its use instead of  ADCIRC  is necessitated  by the need to  estimate reference  

solutions for the Sobol’ indices, something that requires a large number of simulations. The  part of the 

ADCIRC grid within the domain of impact of the storm  includes ny=1,374,934  nodes (dimension of output).   

These correspond to  nodes with at least 5%  probability of being  inundated for this  specific advisory. Three 

different values for the number of total simulations will be examined, k=500, k=1000  and k=10,000, for the 

proposed data-driven PCA implementation. The first two should be  considered reasonable values for real-

time surge forecasting applications [47],  while the third, larger value is examined to better investigate the 

impact on accuracy when larger amount of data is available.   

For this example, the output also poses some unique challenges as it is constrained to be greater than  

zero, with zero indicating the node being dry  (not inundated since surge is equal to the node elevation). A 

significant portion of the domain (number of outputs)  remains dry  for multiple storm simulations (many  of 

the inputs xs).  This bounded behavior for  y  poses challenges for the GMM fit since the latter establishes an 

unbounded  PDF fit to the provided data. These challenges can substantially reduce the accuracy  of the  

respective conditional statistics estimates. The degree of accuracy  reduction will ultimately  depend on the 

magnitude of  the boundary  effects and will differ across the different outputs (nodes in the domain).  For 

this reason, the  implementation of PM-GSA is considered only for the outputs that remain inundated across 

all storm  simulations. Even for  some outputs belonging to  this group, the saturation of surge output  values  

close to zero might still impose some challenges, as will be also discussed later. Note that one  could have  

tried different approaches to accommodate the complex output behavior, and these challenges should  not  

be regarded as deficiencies of the PM-GSA formulation. Here the  direct implementation of the original  

PM-GSA framework is considered [25],  instead of investigating appropriate modifications. For the PCA-

PSA implementation, these  challenges are remedied by  the  transformation to the latent output space, since  

bounded behavior for z is not necessarily expected. As such, there is no reason to anticipate substantial  

adverse effects of the GMM fit for the latent outputs,  originating from  the bounded behavior of the original 

output. For this reason, the application of  PCA-PSA is considered for the entire original  output.  To  

accommodate comparisons to PM-GSA, results will be reported for  two different groups of  output: the 

entire output,  denoted as entire domain  herein, and a portion of the  nodes that are inundated (output not 

saturating at zero) across all simulations, denoted as inundated domain  herein. As discussed earlier, PM-
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GSA is considered only for the  latter group.  The  definition of inundated domain  is based on k=500  

simulations, which ultimately  means that the probability  of these nodes being dry  is less than 1/500=0.2%. 

Also for accommodating the computational challenges associated with PM-GSA for application across all 

outputs (nodes) for the large value of simulations (k=10,000), for  the inundated domain  implementation, a  

simplification is established, considering only ny=100,000  randomly  chosen outputs that are inundated  

across all simulations, instead all outputs belonging  in that category  (inundated across all simulations), 

corresponding  in this case to 800,000 nodes. Since choice is random  and is a  big  proportion  of  the available 

nodes, this simplification in the implementation should not be considered to impact results. Note that the  

PCA-PSA formulation was performed only  once, for the entire domain. Simply when accuracy  results are  

presented for the inundated domain,  the  predictions  for the respective outputs are only used in the  nrmse  

definition according to Eq. (22).  Accuracy  could potentially be improved if PCA-PSA was considered 

strictly for the inundated domain.  

Figure 5 presents, similarly  to  Figure 1,  the ratio of captured  variance as a  function of the number of  

retained principal components for implementations with k=1000 or 10,000 simulations (model evaluations) 

for the entire domain. Based on the results of the figure, for ro=99%, np=11 number of components are  

needed whereas for ro=99.9% np=40  number of components are needed for  both  values of k  =1000 or 

10,000. Despite the larger dimension of the output, we observe that there is no substantial influence of the  

number of simulations k on the variation of r with respect to the number of principal components. 

Figures 6  and 7 show the accuracy  improvement for  the estimation of the first-order Sobol’ indices,  

quantified through  nrmse value, as the number of retained principal components (np) increases for the case 

with k=1000  and k=10,000 simulations, respectively  (similar to Figure 2 and Figure 3  presentations) for  the 

entire domain.  PM-GSA predictions are not included in  these figures. Figure 8 presents similar  results for 

k=1000 for the inundated domain.  PM-GSA results are included in  this figure, while results for  PCA-PSAs  

are omitted due to the poor performance that is exhibited for  this  implementation when  considering the  

application to the entire domain (in Figure 6 and Figure 7). Table 2 summarizes the nrmse values for first-

order Sobol’ indices but also presents values for some  higher-order  (the ones that were identified to have 

higher values) and for all total-effect Sobol’ indices, for all  considered values of  model evaluations k for  

the entire domain.  As in  Figure 6  and  Figure 7,  no PM-GSA results are reported in this  table. Table 3  

presents similar results for  the inundated domain. The same  variant types considered in Figure 8 are 

included in this table. Finally, Figure 9 shows the spatial variability of all first-order Sobol’ indices within  

the geographic domain of impact of Superstorm  Sandy  (focusing  on New Jersey  and New York) and 

presents comparisons between the reference  results and the results established by  the PCA-PSA 

implementations. Figure 10 shows identical results for the total-effect Sobol’ indices. In both  Figure 9 and 

Figure 10, the storm  track forecast for Advisory  20 is also shown with a  red line. For the PCA-based  
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implementations, the results in Tables 2 and 3, and  Figures 9  and 10  correspond to the number of principal 

components for ro=99.9%. 

Results verify  the general trends, reported in the previous example, in this case in  a  higher-dimensional 

implementation (over million of outputs), but also present some  differences, especially  with respect to the  

comparisons with PM-GSA. Like  in the previous  example, as  the  number of principal components increases  

the accuracy  of the PCA-based GSA (PCA-PSA in these figures) improves, and this accuracy  saturates by  

the time the variance of the retained components reaches a  value of 99%, verifying  that the PCA-based  

dimensionality reduction does not impact the probability-model GSA implementation as long as a  sufficient  

number of components is retained. Comparison to  the  PM-GSA results in  Figure 8  and Table 2 indicates 

that PCA-PSA typically outperforms PM-GSA for this example. This should  be attributed,  as discussed  

earlier, to the challenges encountered by the GMM fit of PM-GSA  due to the bounded behavior for the  

original surge  output y. Since such bounded behavior is not necessarily  expected for the latent output z, 

PCA-PSA ends up slightly outperforming PM-GSA. This discussion indicates that in this case the 

transformed (latent) output space the probability model approximation is developed on has an overall 

positive impact on the overall accuracy, further validating the  proposed integration of PCA within the 

original PM-GSA formulation. This positive impact is also clearly evident when comparing the accuracy  

results between the entire domain  (Figure 6 for k=1000 or Table 2) and the inundated domain  (Figure 8 for 

k=1000 or Table 3). Similar level of accuracy  is accomplished across these sets of outputs, indicating the  

latent output transformation clearly accommodates complexities associated with nodes that  have remained  

dry  for many  of the storm  simulations.  
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In general, the comparisons indicate that any errors in the Sobol’ indices estimates should be attributed 

to challenges associated with the probability-based approximation for estimation of the conditional variance 

and covariance statistics, and not with the  addition of the PCA  step. These challenges are greater for higher-

order and total-effect indices, as clearly  shown in  Tables 2 and 3,  owing to the larger dimensionality  of the 

fitted distribution for the GMM; as shown earlier this dimensionality  is related to the nc  value, which is 

proportional to  the order of the index considered. Examining further the accuracy  variation with the increase  

of the number of PCA components in Figures 6-8,  we again observe some initial reduction in accuracy  for 

some indices as np  initially  increases. Like in the  previous example, this should  be attributed to a reduction  

of the quality  of the GMM fit for the originally retained output components when examining the joint PDF,  

and is not of serious concern since it is associated with np  values for which a large PCA truncation errors 

exist (cases that should be avoided anyway). Also, the divergence of PCA-PSAs estimates is  more evident  

in this example. This was  expected since this divergence is related, as identified earlier, to challenges  

associated with the large dimensionality of the fitted PDF across all retained components for PCA-PSAs  

(nc+np  dimensional PDF). Since the np  values that need to be considered increase in this example, owing to  

the larger dimensionality of the output ny, the associated challenges are magnified.  

Figure 6.  Error metric nrmse  of  the first-order Sobol’  indices estimates for  different GSA  variants against the  
number of principal components retained,  for implementation  with k=1000 simulations (model evaluations)  for  the 

storm-surge forecasting example for the entire domain. 
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number of principal components retained,  for implementation  with k=1000 simulations (model evaluations)  for  the 

storm-surge forecasting example for the inundated domain. 
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Table 2. Error metric nrmse of different Sobol’ indices across different GSA variants, for implementations with 
different number of simulaitons k (model evaluations) for the storm-surge forecasting example for the entire 

domain. Number of retained components corresponds to ro=99.9% for the PCA-based implementations. 
nrmse k First-order indices Higher-order 

indices 
Total-effect indices 

ΔRmw Δscross Δsalong Δvw Δscross, 
Δsalong 

ΔRmw, 
Δscross, 
Δvw 

ΔRmw Δscross Δsalong Δvw 

PCA-
PSA 

(MCIf) 

500 0.040 0.026 0.036 0.020 0.104 0.119 0.128 0.059 0.133 0.136 

1000 0.038 0.024 0.018 0.019 0.104 0.122 0.084 0.050 0.107 0.106 

10,000 0.031 0.020 0.014 0.021 0.086 0.118 0.038 0.019 0.068 0.069 
PCA-
PSA 

(MCIp) 

500 0.046 0.084 0.033 0.020 0.105 0.117 0.146 0.062 0.138 0.158 

1000 0.040 0.040 0.022 0.018 0.108 0.126 0.087 0.054 0.086 0.109 

10,000 0.031 0.025 0.013 0.019 0.077 0.109 0.049 0.034 0.060 0.050 
PCA-
PSAs 

(MCIf) 

500 0.048 0.318 0.045 0.022 0.112 0.108 0.475 0.098 0.455 0.454 

1000 0.048 0.321 0.044 0.021 0.273 0.114 0.474 0.103 0.460 0.241 

10,000 0.051 0.080 0.031 0.025 0.109 0.158 0.153 0.048 0.099 0.172 

Table 3. Error metric nrmse of different Sobol’ indices across different GSA variants, for implementations with 
different number of simulations k (model evaluations) for the storm-surge forecasting example for the inundated 

domain. Number of retained components corresponds to ro=99.9% for the PCA-based implementations. 
nrmse k First-order indices Total-effect indices 

ΔRmw Δscross Δsalong Δvw ΔRmw Δscross Δsalong Δvw 

PM-GSA 500 0.051 0.127 0.056 0.018 0.181 0.062 0.292 0.310 

1000 0.046 0.081 0.047 0.015 0.112 0.053 0.196 0.209 

10,000 0.040 0.058 0.019 0.015 0.098 0.030 0.126 0.154 
PCA-PSA 

(MCIf) 
500 0.043 0.027 0.054 0.018 0.117 0.049 0.145 0.203 

1000 0.042 0.026 0.021 0.016 0.084 0.048 0.126 0.155 

10,000 0.036 0.020 0.019 0.016 0.047 0.019 0.109 0.122 
PCA-PSA 

(MCIp) 
500 0.050 0.119 0.050 0.019 0.187 0.057 0.201 0.281 

1000 0.044 0.058 0.031 0.015 0.108 0.055 0.113 0.174 

10,000 0.035 0.032 0.015 0.015 0.057 0.037 0.080 0.081 

Comparing now the two PCA-PSA variants, we observe bigger differences  between the MCIp  and MCIf  

implementations compared to the previous example, especially  for lower values of k. Though for larger 

values of k results for MCIp  and MCIf  are quite similar for all examined sensitivity  indices, as evident 

especially  in the comparisons in Tables 2  and 3, for lower values of k, MCIf  clearly  outperforms  MCIp. 

Evidently,  the relative greater challenges expected for the GMM  fit for this example impact the Monte  
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Carlo integration when the MCIp  formulation is adopted, leading to  the relative reduction in  accuracy  for 

the smaller k values, when that GMM fit is expected to be of lower quality.  Examining additional trends in  

Tables 2  and 3 for  the influence of the number of simulations, as expected as k increases, the accuracy  of 

the GSA estimates increases. This pattern holds across all indices,  but the impact  is greater for the higher-

order and the total-effect indices, and for the PCA-PSAs and PM-GSA implementations. The influence of k 

on higher-order and total-effect indices and on the PCA-PSAs  implementation is attributed to the fact that 

all these instances require higher dimensional fitted GMMs, which are impacted  by the  nc  value for the 

higher-order and total-effect indices and also by  the np  value for the PCA-PSAs implementation. This higher 

dimensionality provides relatively larger benefits when the value of k  increases. For first-order indices  

evaluated through the PCA-PSA implementation, even lower number of  simulations provide sufficient  

information for the GMM fit, contributing to a  relatively  smaller impact by  the k  value. The influence of k  

on the PM-GSA implementation is attributed to the challenges the GMM fit encounters with the bounded 

surge response for some  of the output  components. Larger values of  k  evidently  help alleviate some  of the  

associated challenges, contributing  to  the  improvement in  the sensitivity  index  approximation even for  first-

order indices. This is a  similar trend to  the one identified earlier for the MCIp  formulation for  PCA-PSA,  

though the impact for PM-GSA is more substantial, as the challenges for the GMM fit in the original output  

(as opposed to latent output) are expected to be substantially  larger.  

Overall the comparisons across both examples reveal that despite its computational advantages,  

requiring only one GMM fit, PCA-PSAs  is not a viable alternative due to the reduction in accuracy  even 

when the number of simulations is high. For  PCA-PSA, MCIf  implementation should  be preferred due to  

its demonstrated better robustness for lower k  (model simulations) and significant computational benefits,  

requiring only  np GMM  fits instead of  np(np+1)/2,  which for larger number of retained components 

drastically reduces the computational burden of the PCA-PSA implementation. 

Finally,  results in Figure 9 and Figure 10  demonstrate the insights that can be established through GSA  

in this  application, showing an important spatial variation of  the sensitivity  indices across the geographic 

domain. Depending on the specific part of the domain, different  types of forecast errors  (different 

components of input vector x) are identified as more important in influencing the storm  surge  (Figure 9), 

whereas for big parts of  the  domain some  of them  (Δsalong)  are identified as entirely unimportant based on 

the total-effect indices (Figure 10). The lower accuracy  of the  PCA-PSAs implementation is also very  

evident in these figures, providing  in some  instances (check the larger values  of total-effect indices for  

Δsalong, for example) erroneous sensitivity trends.  On the other hand, all PCA-PSA variants offer very good 

matches to the reference results, and identify  the correct spatial sensitivity  trends. This  is true for both first-

order and total-effect sensitivity  indices, indicating that the  larger estimation error for the latter type of 

indices does not alter the insights that will be obtained from  the GSA implementation for understanding the 
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relative importance of the different types of forecast errors as well as the spatial distribution of this 

importance. This offers another validation of the proposed PCA-PSA formulation, demonstrating that any  

estimation errors have a small influence on the underlying objectives of the GSA implementation.  

Figure 9.  Spatial variability of first-order Sobol’ indices for different  GSA variants, for implementation with  
k=1000 simulations (model  evaluations)  for  the storm-surge forecasting example. Number of retained components 

corresponds to ro=99.9% for the PCA-based  implementations. The  red line corresponds to the forecasted storm track 
for Advisory  20.   
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Figure 10. Spatial variability of total-effect Sobol’ indices for different GSA variants, for implementation with 
k=1000 simulations (model  evaluations)  for  the storm-surge forecasting example. Number of retained components 

corresponds to ro=99.9% for the PCA-based  implementations. The  red line corresponds to the forecasted storm track 
for Advisory  20.   

5. Conclusions  

This paper examined the efficient variance-based global sensitivity analysis (GSA), quantified through 

the estimation of first-/higher-order and  total-effect Sobol’ indices, for applications involving complex  

numerical models and high-dimensional outputs. An  efficient data-driven framework, termed PCA and 

Probability model-based sensitivity analysis (PCA-PSA), was established by  using  as foundation  the 

dimensionality reduction approach in [29]  and by proposing an alternative for the surrogate model–based  

formulation of that study,  adopting and  extending the probability  model-based GSA of [25].  Following  

[29], principal component analysis (PCA) is first implemented, restricting the computational 
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implementation to the estimation of statistics (variance and covariance) for the latent outputs (principal 

components), instead of the original high-dimensional output. The probability  model-based GSA [25]  is 

then extended to estimate these statistics, relying on the  development  of a Gaussian mixture  model (GMM)  

to approximate the joint probability  density  function between some subset of the input vector  (dependent 

upon the Sobol’ index estimated), and each latent output, or each pair of latent outputs. Different Monte  

Carlo integration schemes were examined to accommodate  the probability model-based estimation of the  

different statistics: MCIf  that requires development of a  total of np GMMs, where np  denotes the  number of  

retained components, and  MCIp  that requires the development of a  total  of  np(np+1)/2 GMMs. The 

computationally intensive part of the PCA-PSA algorithm  is the GMM fit to the data. For applications with 

large dimensional outputs,  for which substantial discrepancy is  expected between the number of individual 

outputs and the number of retained components, this approach can offer substantial computational savings.   

The efficiency  and accuracy  of the proposed algorithm  were demonstrated in two examples,  the first  

considering the sensitivity of different peak engineering demand parameters for  a  nine-story benchmark  

building with  uncertain model properties, exposed to earthquake  acceleration at its base, and the second 

examining the sensitivity of the estimated peak-surge to the storm  forecast variability  during Superstorm 

Sandy.  Results  showed that the PCA-based dimensionality  reduction  does not  impact the probability-model 

GSA implementation as long as a  sufficient number of components  is retained. The output space (latent 

space versus original output space)  the probability model approximation is developed on  does not have an  

impact on the overall accuracy, validating the proposed  integration of PCA within the original  probability  

model-based GSA formulation. Errors in the Sobol’  indices estimates  were shown to be connected to 

challenges associated with the GMM-fit to the available data, not related to the dimensionality  reduction or  

output transformation established through PCA. Additionally,  for applications for which the original output  

behavior creates challenges for the GMM fit, transformation to the latent output space can actually  be  

beneficial. This was clearly  demonstrated in  addressing dry nodes in the Superstorm  Sandy  application. An  

alternative formulation of the  PCA-PSA approach was also investigated, requiring only one GMM fit that 

can be used across all estimated statistics, but was shown to provide a  significant reduction in accuracy  and 

so should be avoided. Finally, both  MCIf and MCIp  implementations were shown to provide  in general  

similar accuracy, with MCIf  even outperforming MCIp  for cases where the GMM fit encounters challenges.  

When combined with the higher computational efficiency  accommodated through MCIf, trends indicate a  

strong preference for it.  
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